(1/x^2)-(1/x)=4

Simple and best practice solution for (1/x^2)-(1/x)=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1/x^2)-(1/x)=4 equation:


D( x )

x = 0

x^2 = 0

x = 0

x = 0

x^2 = 0

x^2 = 0

1*x^2 = 0 // : 1

x^2 = 0

x = 0

x in (-oo:0) U (0:+oo)

1/(x^2)-(1/x) = 4 // - 4

1/(x^2)-(1/x)-4 = 0

1/(x^2)-x^-1-4 = 0

x^-2-x^-1-4 = 0

t_1 = x^-1

1*t_1^2-1*t_1^1-4 = 0

t_1^2-t_1-4 = 0

DELTA = (-1)^2-(-4*1*4)

DELTA = 17

DELTA > 0

t_1 = (17^(1/2)+1)/(1*2) or t_1 = (1-17^(1/2))/(1*2)

t_1 = (17^(1/2)+1)/2 or t_1 = (1-17^(1/2))/2

t_1 = (1-17^(1/2))/2

x^-1-((1-17^(1/2))/2) = 0

1*x^-1 = (1-17^(1/2))/2 // : 1

x^-1 = (1-17^(1/2))/2

-1 < 0

1/(x^1) = (1-17^(1/2))/2 // * x^1

1 = ((1-17^(1/2))/2)*x^1 // : (1-17^(1/2))/2

2*(1-17^(1/2))^-1 = x^1

x = 2*(1-17^(1/2))^-1

t_1 = (17^(1/2)+1)/2

x^-1-((17^(1/2)+1)/2) = 0

1*x^-1 = (17^(1/2)+1)/2 // : 1

x^-1 = (17^(1/2)+1)/2

-1 < 0

1/(x^1) = (17^(1/2)+1)/2 // * x^1

1 = ((17^(1/2)+1)/2)*x^1 // : (17^(1/2)+1)/2

2*(17^(1/2)+1)^-1 = x^1

x = 2*(17^(1/2)+1)^-1

x in { 2*(1-17^(1/2))^-1, 2*(17^(1/2)+1)^-1 }

See similar equations:

| 6a+42=3a-12 | | lnx+4-lnx-4=4 | | -24-8x=-10x+16 | | onehalf(x+2)=21 | | 0.8(x+4)+1.8(x-3)= | | 8(x-2)-(x-6)=6(x-1) | | -157=3x-5(5x+5) | | 11/2-11/2 | | -4x+6(-x+11)=-44 | | [[6y]/[5x[[y]^[[]]]]]smalldot;[[10x]/[8[[y]^[[]]]]] | | (6x-5(x-1))+2=-(x-1) | | 5x+4=4x+16 | | -6x+25=-11x-65 | | -3375*-3-8= | | -15*-15*-15= | | 40.5=1y+4x | | 6(3x^2-7x-40)=0 | | -2x-3(-4x-11)=83 | | 0.0525=0.006x+0.00045 | | L^2+6L-16=0 | | 3x-9y=6x+3y | | m=17/25 | | 25p-4+18p=5+13p | | -12=-6+c | | -100-6x=43-x | | m=17/5(2) | | -20+8x=-36 | | -3x-4=-4x-3 | | 8(x-3)+8=5x-2 | | 12x+4+9=10x+17 | | 12x+4+9= | | 7+x-4x=20 |

Equations solver categories